МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАТАРСТАН

Государственное бюджетное образовательно е учреждение высшего образования «Альметьевский государственный нефтяной институт»

«УТВЕРЖДАЮ»

И.о. ректора АГНИ

А.Ф. Иванов

«22»

2020г.

Рабочая программа дисциплины Б1.В.ДВ.08.01 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Направление подготовки: <u>27.03.04 – Управление в технических системах</u> Направленность (профиль) программы: «Управление и информатика в

технических системах»

Квалификация выпускника: бакалавр

Форма обучения: <u>очная</u> Язык обучения: русский

Год начала обучения по образовательной программе: 2020

Статус	ФИО	Подпись	Дата
Автор	Л.Р. Загитова	3 Art	1.06.2020
Рецензент	И.П. Ситдикова	al	3.06.2020
Зав. обеспечивающей кафедры МиИ	3.Ф. Зарипова	3	4.06.2020
СОГЛАСОВАНО		9	
И.о. зав. кафедрой автоматизации и информационных технологий	Р.Р. Ахметзянов	1	19.06.8020

Альметьевск, 2020 г.

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования
- 3. Объем дисциплины в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся
- 4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
 - 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине
 - 4.2. Содержание дисциплины
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине
- 6. Фонд оценочных средств по дисциплине
 - 6.1. Перечень оценочных средств
 - 6.2. Уровень освоения компетенций и критерии оценивания результатов обучения
 - 6.3. Варианты оценочных средств
 - 6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций
- 7. Перечень основной, дополнительной учебной литературы и учебно-методических изданий, необходимых для освоения дисциплины
- 8. Перечень профессиональных баз данных, информационных справочных систем и информационных ресурсов, необходимых для освоения дисциплины.
- 9. Методические указания для обучающихся по освоению дисциплин
- 10. Перечень программного обеспечения
- 11. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине
- 12. Средства адаптации преподавания дисциплины к потребностям обучающихся лиц с ограниченными возможностями здоровья

ПРИЛОЖЕНИЯ

Приложение 1. Аннотация рабочей программы дисциплины

Приложение 2. Лист внесения изменений

Приложение 3. Фонд оценочных средств

Рабочая программа дисциплины «Математическое моделирование» разработана деканом энергомеханического факультета Загитовой Л.Р.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Компетенции обучающегося, формируемые в результате освоения дисциплины «Математическое моделирование»:

Оцениваемые		Оценочные средства
компетенции	Результаты освоения компетенции	текущего контроля и
(код, наименование)	т сзультаты освоения компетенции	промежуточной
		аттестации
ПК-2 - способностью	Знать:	Текущий контроль:
проводить	-аналитические и численные методы	Компьютерное
вычислительные	анализа математических моделей	тестирование по
эксперименты с	процессов;	темам 1-4
использованием	-аппарат математического	Практические задачи
стандартных	программирования в объеме,	по темам 1-4
программных средств	достаточном для получения	
с целью получения	математических моделей процессов и	Промежуточная
математических	объектов автоматизации и управления;	аттестация:
моделей процессов и	Уметь:	Зачет с оценкой
объектов	применять математический анализ и	
автоматизации и	строить математические модели	
управления	процессов и объектов автоматизации и	
	управления, применять математические	
	методы для их решения;	
	Владеть:	
	-навыками применения современного	
	математического инструментария для	
	моделей процессов и объектов	
	автоматизации и управления;	
	-методикой построения, анализа и	
	применения математических моделей	
	для оценки состояния процессов и	
	объектов автоматизации и управления.	

2. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования.

Дисциплина «Математическое моделирование» включена в раздел Б1.В. «Дисциплины по выбору» основной профессиональной образовательной программы по направлению **27.03.04** - «Управление в технических системах», направленность (профиль) программы: «Управление и информатика в технических системах» относится к вариативной части основной образовательной программы. Осваивается на 2 курсе, в 4 семестре.

3. Объем дисциплины в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся.

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 час. Лекции – 17 часов.;

Практические занятия – 34 часа.;

Контроль самостоятельной работы – 2 часа.;

Самостоятельная работа – 91 часов.;

Форма контроля дисциплины: зачёт с оценкой в 4 семестре.

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине.

Очная форма обучения

	Очная форма обучения						
		d.	конта	ды и часы ктной рабо удоемкост часах)	оты,	работа	
Nº	Раздел дисциплины	Семестр	Лекции	Практические занятия	Лабораторные	Самостоятельная	KCP
1.	Тема 1. Линейное программирование	4	9	18	-	25	0,5
2.	Тема 2. Теория двойственности в ЛП	4	4	4	-	25	0,5
3.	Тема 3. Транспортные задачи	4	2	8	-	16	0,5
4.	Тема 4. Нелинейное программирование	4	2	4	-	25	0,5
5	Итого по дисциплине		17	34	-	91	2

4.2. Содержание дисциплины.

Тема	Кол-во часов	Используе- мый метод	Формируемые компетенции
Дисциплинарный мо	дуль 4.1	, , ,	,
Тема 1. Линейное программирование 27 ч.	•		
Лекция 1. Понятие математической модели. Принципы моделирования. Виды математических моделей. Общая постановка задачи линейного программирования.	2ч.	Проблемная лекция	ПК-2
Лекция 2. Элементы линейной алгебры и аналитической геометрии выпуклых множеств. Геом. смысл решения систем неравенств и уравнений с 2-мя переменными. Свойства задачи линейного программирования. Графический метод решения задачи.	2ч.	-	ПК-2
Лекция 3. Симплекс-метод решения задачи ЛП. Алгоритм симплекс-метода.	3ч.	-	ПК-2
Лекция 4. Метод искусственного базиса.	2ч.	Лекция- консультация	ПК-2
Практическое занятие №1,2. Понятие математической модели. Общая постановка задачи линейного программирования.	4ч.	-	ПК-2
Практическое занятие №3,4. Графический метод решения задачи ЛП.	4ч.	-	ПК-2
Практическое занятие №5,6. Симплекс-метод решения задачи ЛП. Алгоритм симплекс- метода. Контрольная работа	4ч.	Обсуждение ситуа- ционной задачи	ПК-2
Практическое занятие №7,8. Метод искусственного базиса.	4ч.	-	ПК-2
Практическое занятие №9. Тестирование.	2ч.		ПК-2
Дисциплинарный м	одуль 4.2		
Тема 2. Теория двойственности в ЛП– 8ч.			
Лекция 5. Двойственные задачи ЛП. Правила составления симметричных, несимметричных и смешанных задач. Теоремы двойственности. Двойственные оценки и их свойства.	2ч.	Проблемная лекция	ПК-2
Лекция 6. Приемы решения двойственных задач. Правило соответствия между переменными задач. Обратная матрица в теории двойственности.	2ч.	-	ПК-2
Практическое занятие №10,11. Правила составления симметричных, несимметричных и смешанных задач. Теоремы двойственности. Двойственные оценки и их свойства.	4 ч.	Метод «мозгового штурма»-	ПК-2
Тема 3. Транспортные задачи-10ч.			
Лекция 7. Математическая модель транспортной задачи. Метод потенциалов. Открытые транспортные задачи. Альтернативный оптимум при решении транспортных задач.	2ч.	-	ПК-2
Практическое занятие 12. Транспортная задача. Метод потенциалов.	2ч.	-	ПК-2
Практическое занятие 13. Задача о назначениях. Венгерский алгоритм.	2ч.	Обсуждение ситуа- ционной задачи	ПК-2
Практическое занятие 14,15. Открытые транспортные задачи. Альтернативный оптимум при решении транспортных задач.	4ч.	-	ПК-2

Тема 4. Нелинейное программирование-6ч.					
Лекция 8. Постановка задачи нелинейного программирования. Классические методы нахождения экстремумов. Критерий Сильвестра. Метод множителей Лагранжа при решении задач нелинейного программирования.	2ч.	Лекция- консультация	ПК-2		
Практическое занятие 16. Классические методы нахождения экстремумов. Критерий Сильвестра. Метод множителей Лагранжа.	2ч.	Метод «мозгового штурма»	ПК-2		
Практическое занятие 17. Тестирование.	2 ч.	-	ПК-2		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Самостоятельная работа обучающихся выполняется по заданию преподавателя, без его непосредственного участия и направлена на самостоятельное изучение отдельных аспектов тем дисциплины.

Цель самостоятельной работы — подготовка современного компетентного специалиста и формирования способной и навыков к непрерывному самообразованию и профессиональному совершенствованию.

Самостоятельная работа способствует формированию аналитического творческого мышления, совершенствует способы организации И исследовательской воспитывает целеустремленность, деятельности, систематичность и последовательность в работе студентов, обеспечивает подготовку студента к текущим контактным занятиям и контрольным мероприятиям по дисциплине. Результаты этой подготовки проявляются в активности студента на занятиях и в качестве выполненных тестовых заданий, и других форм текущего контроля.

Самостоятельная работа может включать следующие виды работ:

- изучение понятийного аппарата дисциплины;
- проработка тем дисциплины, поиск информации в электронных библиотечных системах;
 - подготовка к практическим занятиям;
- работа с основной и дополнительной литературой, представленной в рабочей программе;
 - подготовка к промежуточной аттестации;
- изучение материала, вынесенного на самостоятельную проработку;
- работа в электронных библиотечных системах, справочных, справочно-поисковых и иных системах, связанных с поиском материалов по предложенным тематикам.

Темы для самостоятельной работы обучающегося, порядок их контроля по дисциплине «Математическое моделирование» приведены в методических указаниях:

Л.Р. Математическое моделирование: Загитова методические работ указания no выполнению контрольных uорганизации самостоятельной работы по дисциплине «Математическое моделирование» бакалавров направлений подготовки 15.03.04 «Автоматизация технологических процессов и производств», 27.03.04 «Управление в технических системах» - Альметьевск: типография АГНИ, 2019 - 28с.

6. Фонд оценочных средств по дисциплине

Основной целью формирования ФОС по дисциплине «Математическое моделирование» является создание материалов для оценки качества подготовки обучающихся и установления уровня освоения компетенций.

Полный перечень оценочных средств текущего контроля и промежуточной аттестации по дисциплине приведен в Фонде оценочных средств (приложение 3 к данной рабочей программе).

Текущий контроль освоения компетенций по дисциплине проводится при изучении теоретического материала и решении задач на практических занятиях.

Итоговой оценкой освоения компетенций является промежуточная аттестация в форме зачета с оценкой, проводимая с учетом результатов текущего контроля.

6.1. Перечень оценочных средств

Этапы	Вид	Краткая характеристика оценочного средства	Представление
формиро	оценочного		оценочного
вания	средства		средства в фонде
компетен			
ций			
1	Тестирование	Система стандартизированных заданий,	Фонд тестовых
	компьютерное	позволяющая автоматизировать процедуру	заданий
	_	измерения уровня знаний и умений	
		обучающегося по соответствующим	
		компетенциям. Обработка результатов	
		тестирования на компьютере обеспечивается	
		специальными программами. Позволяет	
		проводить самоконтроль (репетиционное	
		тестирование), может выступать в роли	
		тренажера при подготовке к итоговому зачету	
2	Практическая	Средство оценки умения применять полученные	Комплект задач
	задача	теоретические знания в практической ситуации.	
		Задача должна быть направлена на оценивание	
		тех компетенций, которые подлежат освоению в	
		данной дисциплине, должна содержать четкую	
		инструкцию по выполнению или алгоритм	
		действий	
		Промежуточная аттестация	
3	Зачет с	Итоговая форма определения степени	Фонд тестовых
	оценкой	достижения запланированных результатов	заданий
		обучения (оценивания уровня освоения	
		компетенций). Итоговый тест проводится в	
		тестовой форме по всем темам дисциплины.	

6.2. Уровень освоения компетенций и критерии оценивания результатов обучения

			Уровень освоения компетенций				
№	Оцениваемые	Планируемые	Продвинутый уровень	Средний уровень	Базовый уровень	Компетенции не освоены	
п/п	компетенции (код, наименование)	результаты обучения		Критерии оценивания ј	результатов обучения		
	(код, наименование)	ооучения	«отлично» (от 86 до 100 баллов)	«хорошо» (от 71 до 85 баллов)	«удовлетворительно» (от 55 до 70 баллов)	«неудовлетв.» (менее 55 баллов)	
1	ПК-2 - способностью проводить вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления	Знать: -аналитические и численные методы анализа математических моделей процессов; -аппарат математического программирования в объеме, достаточном для получения математических моделей процессов и объектов автоматизации и	Сформированные систематические представления об аналитических и численных методах анализа математических моделей процессов; аппарате математического программирования в объеме, достаточном для получения математических моделей процессов и объектов автоматизации и управления;	Сформированные, но содержащие отдельные пробелы представления о аналитических и численных методах анализа математических моделей процессов; аппарате математического программирования в объеме, достаточном для получения математических моделей процессов и объектов автоматизации и управления	Неполные представления о аналитических и численных методах анализа математических моделей процессов; аппарате математического программирования в объеме, достаточном для получения математических моделей процессов и объектов автоматизации и управления	Фрагментарные представления о аналитических и численных методах анализа математических моделей процессов; аппарате математического программирования в объеме, достаточном для получения математических моделей процессов и объектов автоматизации и управления	
		управления; Уметь: применять математический анализ и строить математические модели процессов и объектов автоматизации и управления, применять математические методы для их решения	Сформированное умение применять математический анализ и строить математические модели процессов и объектов автоматизации и управления, применять математические методы для их решения	В целом успешное, но содержащее отдельные пробелы использование умений применять математический анализ и строить математическов и объектов автоматизации и управления, применять математические методы для их решения	В целом успешное, но не систематическое использование умений применять математический анализ и строить математические модели процессов и объектов автоматизации и управления, применять математические методы для их решения	Фрагментарное использование умений применять математический анализ и строить математические модели процессов и объектов автоматизации и управления, применять математические методы для их решения	

Владеть:	Успешное и	В целом успешное, но	В целом успешное, но не	Фрагментарное владение
-навыками применения	систематическое владение	содержащее отдельные	систематическое владение	навыками применения
современного	навыками применения	пробелы владение	навыками применения	современного
математического	современного	навыками применения	современного	математического
инструментария для	математического	современного	математического	инструментария для
моделей процессов и	инструментария для	математического	инструментария для	моделей процессов и
объектов	моделей процессов и	инструментария для	моделей процессов и	объектов автоматизации
автоматизации и	объектов автоматизации и	моделей процессов и	объектов автоматизации и	и управления, методикой
управления;	управления, методикой	объектов автоматизации и	управления, методикой	построения, анализа и
-методикой	построения, анализа и	управления, методикой	построения, анализа и	применения
построения, анализа и	применения	построения, анализа и	применения	математических моделей
применения	математических моделей	применения	математических моделей	, ,
математических	для оценки состояния	математических моделей	для оценки состояния	процессов и объектов
моделей для оценки	процессов и объектов	для оценки состояния	процессов и объектов	автоматизации и
состояния процессов и	автоматизации и	процессов и объектов	автоматизации и	управления.
объектов	управления	автоматизации и	управления.	7 1
автоматизации и	7 1	управления.	7 1	
управления.		, г		

6.3. Варианты оценочных средств

6.3.1. Тестирование компьютерное

6.3.1.1.Порядок проведения

Тестирование компьютерное по дисциплине «Математическое моделирование» проводится два раза в течение семестра. Банк тестовых заданий содержит список вопросов и различные варианты ответов.

6.3.1.2. Критерии оценивания

Результат теста зависит от количества вопросов, на которые был дан правильный ответ.

6.3.1.3. Содержание оценочного средства

Тестовые задания для оценки уровня сформированности компетенций

T.		T		
Код	Тестовые вопросы		Варианты ответов	
компетен		1	2	3
ции	П			
THE O		нарный модуль 4.1		
ПК-2	1. Линейное программирование - это	методы	методы	методы
	математическая дисциплина,	нахождения	нахождения	нахождения
	изучающая	наименьшего	наименьшего	наименьшего (или
		(или	(или	наибольшего)
		наибольшего)	наибольшего)	значения
		значения	значения	линейной
		нелинейной	линейной	функции
		функции	функции	нескольких
		нескольких	нескольких	переменных, при
		переменных,	переменных, при	условии, что
		при условии, что	условии, что	последние
		последние	последние	удовлетворят
		удовлетворят	удовлетворят	конечному числу
		конечному	конечному числу	линейных
		числу	нелинейных	уравнений или
		нелинейных	уравнений или	неравенств
		уравнений или	неравенств	
	2.5	неравенств		
	2 Фигура называется выпуклой,	вместе с	вместе с двумя	вместе с
	если	любыми двумя	своими точками	некоторыми двумя
		своими точками	А и В, она	своими точками А
		А и В, она	содержит и весь	и В, она содержит
		содержит и весь	отрезок АВ	и весь отрезок АВ.
	2 M	отрезок АВ		
	3. Многоугольник решений – это	многоугольник,	многоугольник,	многоугольник,
		стороны	стороны	стороны которого
		которого лежат	которого лежат	лежат на прямых,
		на прямых,	на прямых,	уравнения которых получаются из
		уравнения которых	уравнения которых	условия
		получаются из	получаются из	неотрицательности
		уравнения	исходной	переменных ЗЛП
		целевой	системы	переменных эли
		функции	ограничений	
		функции исходной задачи	заменой знаков	
		полодной задачи	неравенств на	
			знаки точных	
			равенств	
			равенств	

	4. ЗЛП не имеет решения в случаях,	ОДР	ОДР - пустое	ОДР - конечное
	4. Эли не имеет решения в случаях, когда (графический метод):	представляет	множество, т.е.	множество, т.е.
	norga (rpapa roman moregy).	собой	при	при совместности
		неограниченную	несовместности	системы
		многогранную	системы	ограничений,
		область, при	ограничений,	,
		этом ЦФ не	,	
		ограничена		
		сверху (при		
		максимизации)		
		или снизу (при		
		минимизации).		
	5. Каждый переход от одной	одна свободная	одна базисная	одна базисная
	вершины к другой (симплекс метод)	переменная	переменная	переменная
	состоит в том, что	приравнивается	приравнивается	приравнивается к
		к нулю, т.е.	к нулю, т.е.	1
		переходит в	переходит в	
		базисную, а одна	свободную, а	
		базисная	одна свободная	
		переменная	переменная	
		переводится в	переводится в	
		свободную	базисную	
	6. Симплекс-метод – это	алгоритм	алгоритм	алгоритм перехода
		перехода от	перехода от	от одной вершины
		одной вершины	одной вершины	к другой в таком
		к другой в таком	к другой в таком	направлении, при
		направлении,	направлении,	котором значения
		при котором	при котором	базисных
		значение	значения	переменных от
		целевой	свободных	вершины к
		функции от	переменных от	вершине
		вершины к	вершины к	минимизируется
		вершине	вершине	
		улучшается	максимизируется	
	7. Чем больше ограничений имеет задача	тем больше вершин ОДР	тем больше рёбер ОДР	тем меньше рёбер ОДР
	8. Система неравенств определяет в	многогранник,	выпуклый	полупространство,
	пространстве	который	объемный	которое
		представляет	многогранник,	представляет ЦФ
		ОДР	который	
			представляет	
			ОДР	
	9. Опорная плоскость может иметь с	ничего общего	не имеет общую	общую прямую
	выпуклым многогранником ОДР		точку (вершину	(ребро).
			многогранника)	
	10. Через каждую из вершин	бесконечное	только одну	опорную линию
	многоугольника ОДР можно	множество	опорную линию	провести нельзя
	провести	опорных линий		
		нарный модуль 4.2		
ПК-2	1. Модели, в которых либо целевая	динамическими	линейными	нелинейными
	функция, либо какое-нибудь из			
	ограничений (либо все ограничения)			
	нелинейны по управляющим			
	переменным.			
	2. Решить задачу нелинейного	найти такие	найти такие	найти такие
	программирования - это значит	значения	значения	значения
		управляющих	управляющих	управляющих
		переменных х ј,	переменных,	переменных хј,
		j=1, n, которые	которые	j=1, n, которые
		доставляют	удовлетворяют	удовлетворяют
		максимум или	системе	системе
		минимум	ограничений и	ограничений
•		функции f.	доставляют	

		максимум или минимум	
3. Задачи, в которых оптимизацию проводят по нескольким параметрам, называют	задачами многокритериал ьной оптимизации	функции f. задачами динамического программирован ия	транспортной задачей
4 В основе метода динамического программирования лежит принцип оптимальности Беллмана, формулирующийся следующим образом:	управление на каждом шаге надо выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш на данном шаге	управление на каждом шаге надо выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, не включая выигрыш на данном шаге	управление на каждом шаге надо выбирать так, чтобы минимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш
5. Чем определяется количество множителей Лагранжа?6. Какие задачи удобно решать, применяя принцип двойственности?	количеством ограничений больше ограничений, чем переменных	количеством переменных в которых число неизвестных больше числа ограничений	количеством итераций в которых число неизвестных равно числу ограничений
7. Решить задачу нелинейного программирования - это значит	найти такие значения управляющих переменных x_j , $j=1n$, которые доставляют максимум или минимум функции f	найти такие значения управляющих переменных, которые удовлетворяют системе ограничений и доставляют максимум или минимум функции f	найти такие значения управляющих переменных x_j , $j=1n$, которые удовлетворяют системе ограничений
8. Если число неизвестных больше числа уравнений n > m, то система 9. План X = (x1, x2,, xn), при	ЗЛП решения не имеет, и она несовместна	в этом случае система имеет единственное решение или не имеет ни одного	имеет бесчисленное множество решений
котором целевая функция задачи принимает свое максимальное (минимальное) значение	называется оптимальным	называется допустимым	называется экстремальным
10. Первая из вершин, в которой линейная форма встретит выпуклый многогранник, будет точкой, в которой	линейная форма достигает наименьшего значения, а последняя из вершин - точкой, в которой линейная форма	линейная форма достигает наибольшего значения, а последняя из вершин - точкой, в достигает свои оптимальные значения	достигает наибольшего значения которой линейная форма достигает наименьшего значения

6.3.2. Практические задачи

6.3.2.1. Порядок проведения

Выполнение практических задач осуществляется студентами на практических занятиях и самостоятельно с использованием лекционного материала, а также материалов из списка рекомендованной основной и дополнительной литературы, учебно-методических изданий и нормативноправовых источников. Ответ студента оценивается преподавателем в соответствии с установленными критериями.

6.3.2.2. Критерии оценивания

Баллы в интервале 86-100% от максимальных (максимальный балл приведен в п. 6.4) ставятся, если обучающийся:

- умеет разбирать альтернативные варианты решения практических задач, развиты навыки критического анализа проблем, предлагает новые решения в рамках поставленной задачи.

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

- показал умение самостоятельно решать конкретные практические задачи, но допустил некритичные неточности и доказательства в ответе и решении.

Баллы в интервале 55-70% от максимальных ставятся, если обучающийся:

- в состоянии решать задачи в соответствии с заданным алгоритмом, однако допускает ряд ошибок при решение конкретной практической задачи из числа предусмотренных рабочей программой дисциплины.

Баллы в интервале 0-54% от максимальных ставятся, если обучающийся:

- допускает грубые ошибки в решении типовых практических задач (неумение с помощью преподавателя получить правильное решение конкретной практической задачи из числа предусмотренных рабочей программой дисциплины).

6.3.2.3. Содержание оценочного средства

Пример задачи для оценки сформированности компетенции ПК-2:

1. Составить оптимальный план передачи сигнала от трех поставщиков с мощностью базовой станции 240, 40, 110 мВт. К четырем потребителям с запросами 90, 190, 40 и 130 мВт. Скорости передачи данных в соте от каждого поставщика к каждому потребителю задана матрицей:

$$\begin{pmatrix}
7 & 13 & 9 & 8 \\
14 & 8 & 7 & 10 \\
3 & 15 & 20 & 6
\end{pmatrix}$$

Полный комплект практических задач по темам дисциплины представлен в ФОС(приложение 3 к данной программе).

6.3.3. Зачет с оценкой

6.3.3.1. Порядок проведения

Итоговая форма оценки степени освоения дисциплины. Зачет с оценкой направлен на выявление соответствия усвоенного материала дисциплины требованиям рабочей программы дисциплины. Зачет с оценкой выставляется по результатам итогового теста проводится в тестовой форме по всем темам дисциплины.

6.3.3.2. Критерии оценивания

Для получения зачета с оценкой общая сумма баллов за контрольные мероприятия текущего контроля (с учетом поощрения обучающегося за участие в научной деятельности или особые успехи в изучении дисциплины) и итогового контроля должна составлять от 55 до 100 баллов (шкала перевода рейтинговых баллов представлена в п.6.4).

Полный перечень оценочных средств текущего контроля и промежуточной аттестации по дисциплине приведен в Фонде оценочных средств (приложение 3 к данной рабочей программе).

6.3.3.3. Содержание оценочного средства

Итоговые тестовые задания для оценки уровня сформированности компетенций (ПК-2)

Тестовые вопросы		Варианты ответов	
•	1	2	3
1. Первая из вершин, в которой линейная форма встретит выпуклый многогранник, будет точкой, в которой	линейная форма достигает наименьшего значения, а последняя из вершин - точкой, в которой линейная форма	линейная форма достигает наибольшего значения, а последняя из вершин - точкой, в достигает свои оптимальные значения	достигает наибольшего значения которой линейная форма достигает наименьшего значения
2 Фигура называется выпуклой, если	вместе с любыми двумя своими точками A и B, она содержит и весь отрезок AB	вместе с двумя своими точками A и B, она содержит и весь отрезок AB	вместе с некоторыми двумя своими точками А и В, она содержит и весь отрезок АВ.
3. Многоугольник решений – это	многоугольник, стороны которого лежат на прямых, уравнения которых получаются из уравнения целевой функции исходной задачи	многоугольник, стороны которого лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки точных равенств	многоугольник, стороны которого лежат на прямых, уравнения которых получаются из условия неотрицательности переменных ЗЛП
4. ЗЛП не имеет решения в случаях, когда (графический метод):	ОДР представляет собой неограниченную многогранную область, при этом ЦФ не ограничена сверху (при максимизации) или снизу (при минимизации).	ОДР - пустое множество, т.е. при несовместности системы ограничений,	ОДР - конечное множество, т.е. при совместности системы ограничений,

5. Каждый переход от одной вершины к	одна свободная	одна базисная	одна базисная
другой (симплекс метод) состоит в том,	переменная	переменная	переменная
что	приравнивается к	приравнивается к	приравнивается к 1
	нулю, т.е. переходит	нулю, т.е. переходит в	
	в базисную, а одна	свободную, а одна	
	базисная	свободная	
	переменная переводится в	переменная переводится в	
	свободную	базисную	
6. Симплекс-метод – это	алгоритм перехода	алгоритм перехода от	алгоритм перехода
	от одной вершины к	одной вершины к	от одной вершины к
	другой в таком	другой в таком	другой в таком
	направлении, при	направлении, при	направлении, при
	котором значение	котором значения	котором значения
	целевой функции от вершины к вершине	свободных переменных от	базисных переменных от
	улучшается	переменных от вершины к вершине	вершины к вершине
	july infactor	максимизируется	минимизируется
7. Чем больше ограничений имеет	тем больше вершин	тем больше рёбер	тем меньше рёбер
задача	ОДР	ОДР	ОДР
8. Система неравенств определяет в	многогранник,	выпуклый объемный	полупространство,
пространстве	который	многогранник,	которое
	представляет ОДР	который представляет ОДР	представляет ЦФ
9. Опорная плоскость может иметь с	ничего общего	не имеет общую	общую прямую
выпуклым многогранником ОДР	·	точку (вершину	(ребро).
		многогранника)	
10. Через каждую из вершин	бесконечное	только одну опорную	опорную линию
многоугольника ОДР можно провести	множество опорных линий	линию	провести нельзя
11. Модели, в которых либо целевая	динамическими	линейными	нелинейными
функция, либо какое-нибудь из	динами тескими	JIMICHIBINI	пезиненивши
ограничений (либо все ограничения)			
нелинейны по управляющим			
переменным.			
12. Решить задачу нелинейного	найти такие	найти такие значения	найти такие
программирования - это значит	значения	управляющих	значения
	управляющих переменных х j, j=1,	переменных, которые удовлетворяют	управляющих переменных хj, j=1,
	п, которые	системе ограничений	п, которые
	доставляют	и доставляют	удовлетворяют
	максимум или	максимум или	системе
	минимум функции	минимум функции f.	ограничений
	f.		
13. Задачи, в которых оптимизацию	задачами	задачами	транспортной
проводят по нескольким параметрам,	многокритериально	динамического	транспортной задачей
называют	й оптимизации	программирования	
14 В основе метода динамического	управление на	управление на	управление на
программирования лежит принцип	каждом шаге надо	каждом шаге надо	каждом шаге надо
оптимальности Беллмана,	выбирать так, чтобы	выбирать так, чтобы	выбирать так, чтобы
формулирующийся следующим	оптимальной была	оптимальной была	минимальной была
образом:	сумма выигрышей	сумма выигрышей на	сумма выигрышей
	на всех оставшихся	всех оставшихся до конца процесса	на всех оставшихся
	до конца процесса шагах, включая	шагах, не включая	до конца процесса шагах, включая
	выигрыш на данном	выигрыш на данном	выигрыш
	шаге	шаге	1
15. Чем определяется количество	количеством	количеством	количеством
множителей Лагранжа?	ограничений		итераций

6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций

В ГБОУ ВО АГНИ действует балльно-рейтинговая система оценки знаний обучающихся.

Общие положения:

- Для допуска к зачету с оценкой студенту необходимо набрать не менее **35 баллов** по результатам текущего контроля знаний.
- Если студент по результатам текущего контроля в учебном семестре набрал от 55 до 60 баллов и по данной дисциплине предусмотрен зачет с оценкой, то по желанию студента в зачетную ведомость и зачетную книжку преподавателем без дополнительного опроса может быть проставлена оценка «удовлетворительно».
- Выполнение контрольных работ и тестов принимается в установленные сроки.
- При наличии уважительных причин срок сдачи может быть продлен, но не более чем на две недели.
- Рейтинговая оценка регулярно доводится до студентов и передается в деканат в установленные сроки.

Порядок выставления рейтинговой оценки:

- 1. До начала семестра преподаватель формирует рейтинговую систему оценки знаний студентов по дисциплине, с разбивкой по текущим аттестациям.
- 2. Преподаватель обязан на первом занятии довести до сведения студентов условия рейтинговой системы оценивания знаний и умений по дисциплине.
- 3. После проведения контрольных испытаний преподаватель обязан ознакомить студентов с их результатами и по просьбе студентов объяснить объективность выставленной оценки.
- 4. В случае пропусков занятий по неуважительной причине студент имеет право добрать баллы после изучения всех модулей до начала экзаменационной сессии.
- 5. Студент имеет право добрать баллы во время консультаций, назначенных преподавателем.
- 6. Преподаватель несет ответственность за правильность подсчета итоговых баллов.
- 7. Преподаватель не имеет права аннулировать баллы, полученные студентом во время семестра, обязан учитывать их при выведении итоговой оценки.

Распределение рейтинговых баллов по дисциплине

По дисциплине «Математическое моделирование» предусмотрены 2 дисциплинарных модуля в 4 семестре.

Распределение рейтинговых баллов по дисциплинарным модулям

Дисциплинарные модули	ДМ 4.1.	ДМ 4.2
Текущий контроль	3-10	3-10
(практические задания)		
Текущий контроль (тестирование)	6-10	6-10
Текущий контроль (контрольная работа)	9-10	8-10
Общее количество баллов	18-30	17-30
Итоговый балл:	35-60	0

Дисциплинарный модуль 4.1

№п/п	Виды работ	Максимальный
		балл
	Текущий контроль	
1	Практическое занятие №1,2. Понятие математической модели.	2
	Общая постановка задачи линейного программирования.	
2	Практическое занятие №3,4. Графический метод решения задачи	2
	ЛП.	
3	Практическое занятие №5,6.	3
	Симплекс-метод решения задачи ЛП. Алгоритм симплекс-метода.	
4	Практическое занятие №7,8. Метод искусственного базиса	3
5	Практическое занятие №9. Тестирование.	
Итого:		10
	Текущий контроль	
1	Контрольная работа	10
2	Тестирование по модулю 4.1	10
	Итого:	30

Дисциплинарный модуль 4.2

N_{OII}/II	Виды работ	Максимальный
		балл
	Текущий контроль	
1	Практическое занятие №10,11. Правила составления	2
	симметричных, несимметричных и смешанных задач. Теоремы	
	двойственности. Двойственные оценки и их свойства.	
2	Практическое занятие 12.	2
	Транспортная задача. Метод потенциалов.	
3	Практическое занятие 13.	2
	Задача о назначениях. Венгерский алгоритм.	
4	Практическое занятие 14,15. Открытые транспортные задачи.	2
	Альтернативный оптимум при решении транспортных задач.	
5	Практическое занятие 16. Классические методы нахождения	2
	экстремумов. Критерий Сильвестра. Метод множителей Лагранжа.	
6	Практическое занятие 17. Тестирование.	
Итого:		10
	Текущий контроль	
1	Контрольная работа	10
2	Тестирование по модулю 4.2	10
	Итого:	30

Студентам могут быть добавлены **дополнительные баллы** за следующие виды деятельности:

- участие в научно-исследовательской работе кафедры (до 7 баллов),
- выступление с докладами (по профилю дисциплины) на конференциях различного уровня (до 5 баллов),
- завоевание призового места (1-3) на олимпиаде, проводимой кафедрой математики и информатики (до 5 баллов), на олимпиадах по математике в других вузах (до 10 баллов),

При этом, если в течение семестра студент набирает более 60 баллов (по результатам дисциплинарных модулей и полученных дополнительных баллов), то итоговая сумма баллов округляется до 60 баллов.

В соответствии с Учебным планом направления подготовки **27.03.04** - «Управление в технических системах», направленность (профиль) программы: «Управление и информатика в технических системах» по дисциплине «Математическое моделирование» предусмотрен зачет с оценкой.

Для получения зачета с оценкой общая сумма баллов (за дисциплинарные модули и экзамен) должна составлять от 55 до 100 баллов (см. шкалу перевода рейтинговых баллов).

Шкала перевода рейтинговых баллов

Общее количество набранных баллов	Оценка
55-70	3 (удовлетворительно)
71-85	4 (хорошо)
86-100	5 (отлично)

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

№ п/п	Библиографическое описание	Количество печатных экземпляров или адрес электронного ресурса	Коэффициент обеспеченности
	Основная.	литература	
1.	Шапкин А.С. Математические	http://www.iprbookshop.ru/85661.html	1
	методы и модели исследования		
	операций [Электронный ресурс]:		
	учебник/ Шапкин А.С., Шапкин		
	В.А.— Электрон. текстовые		
	данные.— Москва: Дашков и К,		
	2019.— 398 с.— Режим доступа:		
	ЭБС «IPRbooks»		

3.	Аттетков А.В. Методы оптимизации [Электронный ресурс]: учебное пособие/ Аттетков А.В., Зарубин В.С., Канатников А.Н.— Электрон. текстовые данные. — Саратов: Вузовское образование, 2018.— 272 с.— Режим доступа: ЭБС «IPRbooks» Костюкова Н.И. Основы математического моделирования [Электронный ресурс]/ Костюкова Н.И.— Электрон. текстовые данные.— Москва: Интернет-Университет Информационных	http://www.iprbookshop.ru/77664.html. http://www.iprbookshop.ru/73691.html	1
	Технологий (ИНТУИТ), 2016.— 219 с.— Режим доступа: ЭБС «IPRbooks»		
4.	Губарь Ю.В. Введение в математическое моделирование [Электронный ресурс]/ Губарь Ю.В.— Электрон. текстовые данные.— Москва: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016.— 178 с.— Режим доступа: ЭБС «IPRbooks»	http://www.iprbookshop.ru/73662.html	1
5.	Математическое моделирование. Практикум [Электронный ресурс]: учебное пособие/ Л.А. Коробова [и др.]. — Электрон. текстовые данные.— Воронеж: Воронежский государственный университет инженерных технологий, 2017.— 112 с.— Режим доступа: ЭБС «IPRbooks»	http://www.iprbookshop.ru/70808.html.	1
	Дополнителн	ьная литература	
1.	Математические методы исследования [Электронный ресурс]: сборник задач/ — Электрон. текстовые данные.— Кемерово: Кемеровский государственный институт культуры, 2012.— 43 с.— Режим доступа: l.— ЭБС «IPRbooks»	http://www.iprbookshop.ru/22021.html	1
2.	Введение в математическое моделирование [Электронный ресурс]: учебно-методическое пособие/ Б.А. Вороненко [и др.].— Электрон. текстовые данные.— Санкт-Петербург: Университет ИТМО, Институт холода и биотехнологий, 2014.— 45 с.— Режим доступа: ЭБС «IPRbooks»	http://www.iprbookshop.ru/65810.html	1

	Учебно-методические издания		
1		http://elibrary.agni-rt.ru	1

8. Перечень профессиональных баз данных, информационных справочных систем и информационных ресурсов, необходимых для освоения дисциплины.

No	Наименование	Адрес в Интернете
п/п		
1	Общероссийский математический портал,	http://www.mathnet.ru/
	развиваемый и созданный Математическим	
	институтом им. В.А. Стеклова РАН	
	Современные методы принятия	http://www.itlab.unn.ru/?dir=198
	оптимальных решений: Учебно-	_
	методический комплекс	
	Электронная библиотечная система	http://biblioclub.ru
	«Университетская библиотека Online»	_
2	Федеральный портал «Российское	http://www.edu.ru
	образование»	_
3	Федеральный цент информационных	www.fcior.edu.ru
	образовательных ресурсов. Единое окно	
	доступа к образовательным ресурсам	
4	Российская государственная библиотека	http://www.rsl.ru
		-
5	Электронная библиотека Elibrary	http://elibrary.ru
	-	
6	Электронно-библиотечная система	http://iprbookshop.ru
	IPRbooks	
7	Электронная библиотека АГНИ	http://elibrary.agni-rt.ru

9. Методические указания для обучающихся по освоению дисциплины

Цель методических указаний по освоению дисциплины — обеспечить обучающемуся оптимальную организацию процесса изучения дисциплины, а также выполнения различных форм самостоятельной работы.

Изучение дисциплины требует систематического и последовательного накопления знаний.

Лекция закладывает основы знаний по предмету в обобщенной форме. При подготовке к лекционным занятиям (теоретический курс) обучающимся необходимо:

- перед лекционным занятием студент должен повторить материал предыдущей лекции, просмотреть рекомендуемую литературу;
- при затруднениях в восприятии материала следует обратиться к основным литературным источникам, рекомендованным рабочей программой дисциплины или к преподавателю по графику его консультаций.

При подготовке к практическим занятиям необходимо:

- тщательно проработать лекционный материал, дополнительную литературу, рекомендованную рабочей программой и методическими пособиями;
- подготовить ответы на контрольные вопросы заявленные в методических пособиях по дисциплине;
- в начале занятий студенты могут обратиться к преподавателю для дополнительного разъяснения проблемных вопросов.

Обучающимся, пропустившим занятия (независимо от причин), рекомендуется не позже, чем в 2-недельный срок явиться на консультацию к преподавателю и отчитаться по теме, изучавшейся на занятиях.

Самостоятельная работа студентов имеет систематический характер и складывается из следующих видов деятельности:

- подготовка ко всем видам контрольных испытаний, в том числе к текущему контролю успеваемости (в течение семестра), промежуточной аттестации (по окончании семестра);
- самостоятельное изучение теоретического материала (конспекты лекций, учебники, учебно-методическая литература, рекомендованные ресурсы в сети Интернет).

Перечень учебно-методических изданий, рекомендуемых студентам для подготовки к занятиям и выполнению самостоятельной работы, а также методические материалы на бумажных и/или электронных носителях, выпущенные кафедрой своими силами и предоставляемые студентам во время занятий, представлены в пункте 7 рабочей программы.

Для изучения дисциплины также, используется система дистанционного обучения АГНИ «Цифровой университет» (СДО АГНИ), созданная да платформе MOODLE, которая позволяет организовать контактную работу обучающихся посредством сети «Интернет» в удаленном режиме доступа. При этом трудоемкость дисциплины и контактной работы, материалы, используемые для проведения занятий, соответствуют учебному плану, РПД и позволяют полностью освоить заданные компетенции. Вид и форма лекционного материала и материала для практических занятий определяется преподавателем и размещается в СДО АГНИ «Цифровой университет».

10. Перечень программного обеспечения

Освоение дисциплины «Математическое моделирование» предполагает использование следующего программного обеспечения:

NC.	11	п	п
No	Наименование программного	Лицензия	Договор
п/п	обеспечения		
1	Microsoft Office Professional Plus	№67892163	№0297/136
	2016 Rus Academic OLP (Word,	от 26.12.2016г.	от 23.12.2016г.
	Excel, PowerPoint, Access)		
2	Microsoft Office Standard 2016	№67892163	№0297/136
	Rus Academic OLP (Word, Excel,	от 26.12.2016г.	от 23.12.2016г.
	PowerPoint)		
3	Microsoft Windows Professional	№67892163	№0297/136
	10 Rus Upgrade Academic OLP	от 26.12.2016г.	от 23.12.2016г.
4	ABBYY Fine Reader 12	№197059	№0297/136
	Professional	от 26.12.2016г.	от 23.12.2016г.
5	Kaspersky Endpoint Security для	№ 24C4191023143020830784	BP00347095-
	бизнеса – Стандартный Russian		СТ/582 от
	Edition		10.10.2019г
6	Электронно-библиотечная		Лицензионный
	система IPRbooks		договор №494 от
			01.10.2019г
7	ПО «Автоматизированная	Свидетельство	
	тестирующая система	государственной регистрации	
		программ для ЭВМ	
		№2014614238	
		от 01.04.2014г.	
8	Лицензия на право	Иж-11-00164 — номер	№Нп-17-00007/43
	использования Учебного	лицензионного соглашения	от 20.02.2017г.
	комплекта программного		
	обеспечения: Пакет обновления		
	КОМПАС-3D до версий V16 и		
	V17 (на 50 мест)		
9	7-Zip архиватор	(свободно распространяемое ПО))
_	, aprilibator	(12200 Allo Pastiposi patinomos II	- <i>j</i>

11. Материально-техническая база, необходимая для осуществления образовательного процесса по данной дисциплине.

Освоение дисциплины «Математическое моделирование» предполагает использование следующего материально-технического обеспечения:

№	Наименование специальных	Оснащенность специальных помещений
п/п	помещений и помещений для	и помещений для самостоятельной
	самостоятельной работы	работы
1.	Ул. Р Фахретдина, 42. Учебный корпус В, аудитория В-412 (учебная аудитория для проведения занятий лекционного типа)	 Компьютер в комплекте с монитором Проектор BenQ MX704 Экран с электроприводом
2.	Ул. Р Фахретдина, 42. Учебный корпус В, аудитория В-309 (учебная аудитория для проведения занятий лекционного типа, занятий семинарского (практического) типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации)	1. Ноутбук LenovoIdeaPadB5080 2. Проектор BenqMX 704 3. Экран на штативе
3.	Ул. Ленина, 2. Учебный корпус А, аудитория А-303 (учебная аудитория для проведения занятий лекционного типа, практического типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации)	1. Ноутбук Lenovo IdeaPad B5080 2. Проектор SMART V30 3. Интерактивная доска SB480
	Ул. Ленина, 2. Учебный корпус А, аудитория А-326 компьютерный класс (учебная аудитория для проведения занятий практического типа, , групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации)	Компьютер в комплекте с монитором IT Corp H110 – 10 шт. с подключением к сети "Интернет" и обеспечением доступа в электронную информационнообразовательную среду института Принтер HP LJ P2015d Сканер Epson Perfection V33

^{*}Специальные помещения – учебные аудитории для проведения занятий лекционного типа, практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

12. Средства адаптации преподавания дисциплины к потребностям обучающихся лиц с ограниченными возможностями здоровья

При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися лицам с ограниченными возможностями здоровья:

- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем;
- применение дистанционных образовательных технологий для организации форм текущего контроля;
- увеличение продолжительности сдачи обучающимся лицам с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы (проекта) не более чем на 15 минут.

Рабочая программа составлена в соответствии с требованиями ФГОС ВО и учебным планом по направлению подготовки 27.03.04 - «Управление в технических системах», направленность (профиль) программы: «Управление и информатика в технических системах».

АННОТАЦИЯ рабочей программы дисциплины

«МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ»

Направление подготовки

«Управление в технических системах»

Направленность (профиль) программы:

«Управление и информатика в технических системах»

Оцениваемые компетенции (код, наименование)	Результаты освоения компетенции	Оценочные средства текущего контроля и промежуточной аттестации
ПК-2 - способностью	Знать:	
проводить	-аналитические и численные методы	Текущий контроль:
вычислительные	анализа математических моделей	Компьютерное
эксперименты с	процессов;	тестирование по
использованием	-аппарат математического	темам 1-4
стандартных	программирования в объеме,	Практические задачи
программных средств с	достаточном для получения	по темам 1-4
целью получения	математических моделей процессов и	
математических моделей	объектов автоматизации и управления;	
процессов и объектов	Уметь:	
автоматизации и	применять математический анализ и	
управления	строить математические модели	
	процессов и объектов автоматизации и	Промежуточная
	управления, применять	аттестация:
	математические методы для их	Зачет с оценкой
	решения;	
	Владеть:	
	-навыками применения современного	
	математического инструментария для	
	моделей процессов и объектов	
	автоматизации и управления;	
	-методикой построения, анализа и	
	применения математических моделей	
	для оценки состояния процессов и	
	объектов автоматизации и управления.	

Место дисциплины в	Б1.В.ДВ.8 Дисциплина «Математическое моделирование»
структуре ОПОП ВО	включена в раздел Б1.В. «Дисциплины по выбору» основной
	профессиональной образовательной программы по
	направлению 27.03.04 - «Управление в технических
	системах». Осваивается на 2 курсе, в 4 семестре.
Общая трудоемкость	Зачетных единиц по учебному плану: 4 ЗЕ.
дисциплины	Часов по учебному плану: 144 ч.
(в зачетных единицах	
и часах)	

Виды учебной работы	-лекции – 17 часов,
	-практические занятия – 34 часа,
	-контроль самостоятельной работы – 2 часа,
	-самостоятельная работа – 91 часов.
Изучаемые темы	Тема 1. Линейное программирование
(разделы)	Тема 2. Теория двойственности в ЛП
	Тема 3. Транспортные задачи
	Тема 4. Нелинейное программирование
Форма промежуточной	Зачёт с оценкой в 4 семестре.
аттестации	

ПРИЛОЖЕНИЕ 2 «УТВЕРЖДАЮ»

Первый проректор АГНИ

«»20_	Г
ЛИСТ ВНЕСЕНИЯ ИЗМЕНЕНИЙ к рабочей программе дисциплины Б1.В.ДВ.08.01	
«МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ»	
Направление подготовки «Управление в технических системах»	
Направленность (профиль) подготовки: «Управление и информатика в технических системах»	
на 20/20 учебный год	
В рабочую программу вносятся следующие изменения:	
	_
	_
	_
	_
	_
	_
	_
	_
Изменения в рабочей программе рассмотрены и одобрены на заседании кафедры Математики и информатики (наименование кафедры)	1
протокол №от ""20г.	
Заведующий кафедрой:	

(подпись)

(И.О.Фамилия)

(ученая степень, ученое звание)